首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1921篇
  免费   121篇
  国内免费   7篇
工业技术   2049篇
  2024年   4篇
  2023年   38篇
  2022年   85篇
  2021年   144篇
  2020年   95篇
  2019年   99篇
  2018年   127篇
  2017年   113篇
  2016年   133篇
  2015年   92篇
  2014年   128篇
  2013年   216篇
  2012年   183篇
  2011年   161篇
  2010年   95篇
  2009年   74篇
  2008年   40篇
  2007年   32篇
  2006年   26篇
  2005年   26篇
  2004年   18篇
  2003年   19篇
  2002年   12篇
  2001年   18篇
  2000年   13篇
  1999年   5篇
  1998年   12篇
  1997年   1篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   5篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有2049条查询结果,搜索用时 15 毫秒
101.
A conventional free‐radical initiating process was used to prepare graft copolymers from acrylonitrile (AN) with corn‐cob cellulose with ceric ammonium nitrate (CAN) as an initiator. The optimum grafting was achieved with corn‐cob cellulose (anhydroglucose unit, AGU), mineral acid (H2SO4), CAN, and AN at concentrations of 0.133, 0.081, 0.0145, and 1.056 mol/L, respectively. Furthermore, the nitrile functional groups of the grafted copolymers were converted to amidoxime ligands with hydroxylamine under basic conditions of pH 11 with 4 h of stirring at 70°C. The purified acrylic polymer‐grafted cellulose and polyamidoxime ligand were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy analysis. The ligand showed an excellent copper binding capacity (4.14 mmol/g) with a faster rate of adsorption (average exchange rate = 7 min), and it showed a good adsorption capacity for other metal ions as well. The metal‐ion adsorption capacities of the ligand were pH‐dependent in the following order: Cu2+ > Co2+ > Mn2+ > Cr3+ > Fe3+ > Zn2+ > Ni2+. The metal‐ion removal efficiency was very high; up to 99% was removed from the aqueous media at a low concentration. These new polymeric chelating ligands could be used to remove aforementioned toxic metal ions from industrial wastewater. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40833.  相似文献   
102.
In attempt to compare the removal efficiency and yield of the activated carbon prepared using the conventional and microwave‐assisted heating is the focus of this work. Toward this olive stone (a biomass precursor) is activated using the popular activating agent potassium hydroxide. The process optimization exercise is carried out by using the standard full factorial statistical design of experiments (response surface methodology). The activated carbons prepared under the optimized conditions are compared based on the adsorption capacity and yield. The adsorption capacity was found higher using microwave heating as compared with conventional heating. The microwave heating requires significantly lesser holding time as compared to conventional heating method to produce activated carbon of comparable quality, with higher yield. The BET surface area of carbon using microwave heating is significantly higher than the conventional heating. Although the mesopore surface area of carbon is not vary significantly, the activation time, power, and nitrogen gas consumption are significantly lower than the conventional heating rendering that the activation process via microwave is more economical than that via conventional heating. The adsorption isotherm data fitted the Langmuir isotherm well and the monolayer adsorption capacity was found to be 12.0 and 8.42 mg/g for microwave and thermally heated activated carbon, respectively. Regeneration studies showed that microwave‐irradiated and thermally heated olive stone could be used several times by desorption with an HCl reagent. Both carbons can be used for the efficient removal of Ni2+ (>99%) from contaminated wastewater. © 2013 American Institute of Chemical Engineers AIChE J, 60: 237–250, 2014  相似文献   
103.
The Cr3+ ions doped multi-oxide ZnFe2−xCrxO4 ferrite nanoparticles have been synthesized by chemical co-precipitation method. Site occupancies of Zn2+, Cr3+ and Fe3+ ions were analyzed using X-ray diffraction data and Buerger's method. The effect of the constituent phase variation on the magnetic hysteresis behavior was examined by saturation magnetization which decreases with the increase in Cr3+ content in place of Fe3+ ions at octahedral B-site. Typical blocking temperature (TB) around 90 K was observed by zero field cooling and field cooling magnetization study. Room temperature Mössbauer spectra show two paramagnetic doublets (tetrahedral and octahedral sites). The isomer shifts of both doublets decrease whereas quadrupole splitting and relative area of tetrahedral A-site increases with increasing Cr3+ substitution. The dielectric constant (measured on compositions x=0, 0.4, 0.8 and 1.0) increases when the temperature increases as in the semiconductor. This behavior is attributed to the hopping of electrons between Fe2+ and Fe3+ ions with a thermal activation.  相似文献   
104.
The performances of three advanced non-linear controllers are analyzed for the optimal set point tracking of styrene free radical polymerization (FRP) in batch reactors. The three controllers are the artificial neural network-based MPC (NN-MPC), the artificial fuzzy logic controller (FLC) as well as the generic model controller (GMC). A recently developed hybrid model (Hosen et al., 2011a. Asia-Pac. J. Chem. Eng. 6(2), 274) is utilized in the control study to design and tune the proposed controllers. The optimal minimum temperature profiles are determined using the Hamiltonian maximum principle. Different types of disturbances are introduced and applied to examine the stability of controller performance. The experimental studies revealed that the performance of the NN-MPC is superior to that of FLC and GMC.  相似文献   
105.
In this paper, the fabrication of novel burnable absorber fuel concepts with oxide pellets, containing either a lumped Gd2O3 rod, a mini‐pellet, or a spherical particle in the centerline of the oxide pellet, is investigated to propose the lumped Gd2O3 burnable absorber fuel concept to improve nuclear fuel performance with longer fuel cycle lengths and better fuel utilization. The unique characteristic of the lumped Gd2O3 burnable absorber fuel is its high spatial self‐shielding factor that reduces its burnout rate and, therefore, improves the reactivity control. Oxide pellets containing lumped Gd2O3 were fabricated by using a combination of cold isostatic pressing and microwave sintering at 1500°C to understand the potential technical issues in the fabrication of duplex burnable absorber fuel. The effect of the sintering temperature on the densification and phase transformation of 8 wt.% yttria‐stabilized zirconia, a surrogate for UO2, was investigated. Spherical Gd2O3 particles were fabricated by the drip casting of a Gd2O3‐based Na alginate solution. The fabrication of duplex oxide pellets by using presintered Gd2O3 mini‐pellets resulted in internal cracks at the interface between the Gd2O3 and 8 wt.% yttria‐stabilized zirconia layers because of the mismatch of their densification. However, the formation of interfacial cracks was eliminated by controlling the initial sintered density of the lumped Gd2O3.  相似文献   
106.
Impedance analyses was performed on undoped and Nb-doped CaCu3Ti4O12 (CaCu3Ti4−xNbxO12+x/2; x = 0, 0.01, 0.03, 0.05, 0.1) to investigate their electrical properties. The pellet samples were prepared using the solid state reaction method. Silver electrode was deposited on both pellets’ surfaces for electrical measurement. The thermally etched samples showed tiny bumped domains within the grains. The existence of both domain and grain boundaries are believed to strongly influence the dielectric constant of CaCu3Ti4O12 (CCTO). Undoped CCTO showed two arcs of impedance complex plane while Nb-doped samples have three arcs. Each arc represents the constituent elements of the CCTO. The highest frequency arc is evidence that CCTO consists of conductive domains which measure about 1 Ω and are insulated by two types of barriers, i.e. domain boundary and grain boundary.  相似文献   
107.
Articulated offshore towers are highly flexible against rotation at the hinges and derive their stability by means of inherently large buoyancy forces. The displacement response of such towers is mainly governed by the rigid body mode of vibration which has a very low frequency. Since the fluctuating wind velocity spectrum has high energy content in the low frequency region, therefore, wind induces significant dynamic response of such towers. In this paper, the responses of single and double hinged articulated towers are compared under various ocean environments. A Monte Carlo simulation technique is used to model the random sea environment. The sea state is characterized by Pierson–Moskowitz spectrum while the fluctuating wind has been estimated using Simiu's spectrum for compliant platforms. Iterative time domain solution procedure is adopted to take care of time dependent parameters and nonlinearities. Stochastic response is characterized by statistical quantities and power spectral density functions (PSDF) for various parametric combinations. Studies of wind effects are found to be imperative for double hinged articulated towers to serve and survive in the hostile offshore environment. The response PSDF highlights the wind induced dynamic responses of the towers.  相似文献   
108.
109.
Micro-scaled parts with dimension below 1 mm need to be manipulated with high precision and consistency in order to guarantee successful microassembly process. Often these requirements are difficult to be achieved particularly due to the problems associated with the structural integrity of the grasping mechanism which will affect the accuracy of the manipulation. Furthermore, the object's texture and fragility imply that small perturbation by the grasping mechanism can result in substantial damage to the object and leads to the degradation of its geometry, shape, and quality. This paper focuses on the unification of two designing approaches to develop a compliant-based microgripper for performing high precision manipulation of micro-objects. A combination of Pseudo Rigid Body Model (PRBM) and Finite Element Analysis (FEA) technique has proven to improve the design efficiency by providing the essential guideline to expedite the prototyping procedure which effectively reduces the cost and modeling time. An Electro Discharge Machining (EDM) technique was utilized for the fabrication of the device. Series of experimental studies were conducted for performance verification and the results are compared with the computational analysis results. A high displacement amplification and maximum stroke of 100 μm can be achieved.  相似文献   
110.
Peak-to-average power ratio (PAPR) is one of the main drawbacks in orthogonal frequency division multiplexing (OFDM) systems. High PAPR forces the power amplifier to back off in order to operate in its linear region, which degrades the power efficiency of the system. Several PAPR reduction techniques have been developed, but most of them have not considered both complexity and PAPR reduction. In this paper, a novel PAPR reduction scheme based on the insertion of dummy sequences to an enhanced partial transmit sequence is proposed. By applying this scheme the PAPR performance is enhanced compared to the conventional methods while the complexity is significantly reduced. Numerical analysis is carried out with OFDM signal and QPSK modulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号